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I. INTRODUCTION

o it

Information analysis is a useful tool in the characterization
of radar system performance. This type of analysis was first
applied by Woodward and Davies in their now classical study of
the information-~gathering capabilities of matched-filter radar

receivers with respect to the range parameters. 1,2 In

modern radars, target discrimination plays an important role, and
thus the consideration of other target signature parameters is
necessary. A recent study of the extension of the Woodward-Davies
approach to more general parameter sets is reported in Poor.3 An
important aspect of this problem which has not been considered
previously is the treatment of time-varying parameters. Since many
of the parameters of interest in the discrimination mode of a radar
are dynamical in nature, the study of such parameters in that con-
text is of interest.

P

N iatiabag

In this report we consider the application of the notions of :
continuous-time information theory to the analysis of the informa-
tion-gathering capabilities of radars with respect to dynamical
parameters. Section II presents the basic definitions of interest
in this problem and includes a discussion of the earlier studies
of radar information analysis for nondynamical signature parameters.

In Section III the analysis of dynamical signature parameters when
observed in white Gaussian noise is considered. Results are pre-

sented for a general model which can be applied to parameters such |
as target vibration. Section IV considers the problem of charac- :
terizing the rate at which radar observations generate information
about parameters, and it is seen that, within mild restrictions,
this rate can be determined from the spectral of the signature
parameters. A discussion of several extensions of this work is
included in Section V.

1. P. M. Woodward and I. L. Davies, "A Theory of Radar Information,'
Phil. Mag., Vol. 41, 1950, pp. 1001-1017.

vl ive

2. P. M. Woodward, Probability and Information Thecry, with Arvlications tc
2ader , McGraw-Hill, New York, 1955.

3. H. V. Poor, Infovmation and Ambiguity in Miliimeter-Wave Pacar:
Characterization and 3imal Mcdeling, U.S. Army Missile Command,
Contractor Report TR-RE-CR-80-11, M&S Computing, Inc.,
Huntsville, Alabama, January 1980.




II.

BACKGROUND

A. The Information Theoretical Model

As a general model, consider the configuration depicted
in Figure 1. This model consists of an "observation" Y which is
the output of the "channel" resulting from the input "message" X.
Associated with the message X is a quantity of information denoted
by H(X) and termed the entro of X. Also associated with X and Y
is a quantity of mutual 1nformatigg, denoted by I(Y;X), which is
the amount of information about X contained in Y. This latter
quantity is also known as the information gain of the channel and
is a measure of the information-gathering capability of the channel i
with respect to X. Thus we have a perfect channel if I(Y;X) = H(X) !
and a useless channel if I(Y;X) = 0.

As an example, consider the finite-alphabet case in which X
can take one of n possible values {xl, Xoreaos xn} and Y can take

one of m possible values {yl, Yoreoas ym}. The probabilistic

nature of X and Y can be determined completely in this case by
their joint probability mass function PXY defined by

i,2,...,n (1)

P (xi, y.) = Prob {X = Xy and Y = y.}; i
J i=1i,2,...,m.

XY J

Similarly, X can be described by its marginal probability mass
function PX given by

Px(xi) = Prob {X = xi} = :g; PXY(xi’ yj); i=1,2,...,n, (2)
J=

and Y by its marginal

PY(Yj) Prob {y = yj; = :i: PXY (xi, yj); j=1,2....m . (3)
1=1

For this situation the entropy of X is given by

H(X) = - :{; Px(xi) log [Py(x;)1, (4)
1=

and the mutual information of X and Y is given by

P (X,, v.)
I(Y; X) = 2 2 pXY (xi, yj) log XY - . (3)
= £ PX(Xi) PY(yj)
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Similarly, for X and Y continuous-valued or vector-valued,
H(X) and I(Y;X) can be defined in terms of the joint and marginal
statistical properties of X and Y. A thorough treatment of these

; 4

il

ideas is found in Gallagher.
. B. Information Analysis of Radar Systems

To apply the model of Figure 1 to the radar problem, we
consider the "message" X to be the radar signature of a target of
interest and the observation Y to be either (a) the radar return,
or (b) the output of a radar signal processor. Thus, in case (a),
the mutual information I(Y;X) determines the total amount of
information available about the radar signature; and, in case (b),
I(Y;X) measures the ability of the radar to gather this information.

The first application of these ideas to the radar prob-

lem is due to Woodward and Davies1 in which the quantity X is the
range delay of a target and the observation Y is the output from
a matched-filter receiver. Assum.ng that the radar return is
observed in additive white Gaussian noise and that the range delay
is uniformly distributed over the delay-gate interval ([0,T],
Woodward and Davies showed that

{log (o BT/ N271e); if A=z0
(p2+1) /2- log (p N2m); if A=zl

P

I(Y;X) =

where p is the signal-to-noise ratio, 8 is the signal bandwidth
and A is an ambiguity parameter.

Two extensions of the Woodward and Davies approach are
necessary in order to apply this analysis to more general radar
problems. The first is to apply this approach to more general

s parameters and parameter sets, and the second is to generalize
the approach to the dynamical case in which the parameters are
time varying within the observation interval. The first of these

two extensions is discussed in a recent report.3 In the follow-
ing sections the second extension for general dynamical parameter
models is considered.

4. R. G. Gallagher, Injormaticn Theory and Reliatle Communication,
John Wiley & Sons, New York, 1968.




III. INFORMATION GAIN FOR DYNAMICAL RADAR PARAMETERS

A. I(Y;X) for Noisy Observation of a Random Process

In the discrimination mode of a radar, many signature para-
meters are time-varying within the observation interval. Since the
dynamics of most parameters are target dependent, this dynamical
behavior might be exploited to improve discrimination performance.
Thus, we would like to generalize the adynamical approach dis-
cussed in Section II to the dynamical case. To do so we assume
now that the signature parameter X is a random process, i.e., that

X=1{X(t); 0 <t < T} (6)
where [0,T) is the observation interval. We also assume that the

observation Y consists of a noisy observation of X; i.e., we have
Y = {¥(t); 0 < t < T} where

Y(t) = X(t) + N(t); 0 <t < T, (7)

and where {N(t); 0 < t < T} represents Gaussian white noise, indepen-
dent of X, with spectral height Ny-

For the model of Equation (7) we would like to determine
the mutual information I(Y;X). However, the determination (or even
the definition) of this guantity is not as simple as for the finite-
alphabet case noted in subsection IIA. The treatment of informa-
tion theoretical quantities for continuous-time random processes

is discussed in detail in the book by Pinsker.5 The reader is
referred to this reference for details of this analysis. The

model of Equation (7) has been studied by Duncan,6 and it can be
shown that for this case

T - 2
I(X;Y) = gi— E ’_0[ IX(t) - X(t)] dt (8)
0

where E {.} denotes statistical expectation and where X(t) is the
minimum-mean-square-error (MMSE) estimate of X(t) based on observing
{Y(t); 0 < v < t}. Note that it can be shown that (see, for example,

Wong7)

X(t) = E {X(t)|¥(1); 0 < 1t < t} (9)

-} denotes conditional expectation,

where E{.

- . -

M. S. Pinsker, Infcrmation and Information Stability of Sandom VariaZlee
and Prceesses, Holden-Day, San Francisco, 1964.

5.

6. T. E. Duncan, "On the Calculation of Mutual Information," II.Y
. Airnil. Math., Vol. 19, 1970, pp. 215-220.

L
.

7. E. Wong, 3andem Processes in Informaticnm and IDymamical Syetems, John Wiley
& Sons, New York, 1980.

3
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Equation (8) indicates that, for the model of Equation (7),
the mutual information I(Y;X) is one-half of the normalized mean-~
integrated-square error associated with the MMSE estimate of X(t)
based on {Y¥(1); 0 < v < t}. The problem of determining these latter
quantities has been studied extensively for the situation in which
the process X is generated by a stochastic dynamical equation. A

summary of these techniques is found in Gelb, et al. In the fol-
lowing subsection we consider the application of the formula of
Equation (8) to the specific case of target vibration.

B. Information Gain for the Vibration Signature

An important discriminant for surface-to-surface radar
application is the vibration signature of the target. It has been
demonstrated that the primary effect of target vibration on the

radar return is to produce a frequency modulation.9 Thus, we con-
sider the observation configuration depicted in Figure 2. Recall

that a discriminator is a device which extracts frequency informa-
tion from a waveform. Because of imperfect operation of the discrimi-
nator, thermal noise, and other channel noise, we may assume that

the discriminator output ¥ = {¥Y(t); 0 < t < T} is a noisy version

of the target vibration process X = {X{t); 0 < t < T}. Assuming

the white-noise model of Equation (7) we can thus compute I(Y;X)

for the configuration of Figure 2.

The vibration process X can be modeled as a superposition of ‘
the effects of the various vibrational modes of the target result-
ing from excitation by the vibrating source (i.e., the motor). i
Thus, we can write }

X(t) = c; Zi(t): 0 <t<T (10)
l=

where Zi(t); i=1,2,...,n are components due to the vibrational

resonant modes of the target, and the c,; i=1,2,..,n are weights
reflecting the relative effects of the Yarious vibrational modes

on the waveform modulation. The generating mechanism of the
vibrational modes can be modeled as a linear stochastic multi- T

variable dynamical system; that is, Z(t) = [Zl(t), Zz(t),...,zn(t)]
satisfies the vector differential equation¥*

T A o 0 e oy =i o

8. A. Gelb, et al., dpplied (ptimal Estimation, MIT Press, Cambridge,
Massachusetts, 1974.

9. P. M. Alexander, 4 Thecretical inalysis of Characteristic Faiar Zimals
Ffrom Vibrating Targets, Technical Note No. T-79-14, Advanced Sensors
Directorate, U.S. Army Missile Research and Development Command,

Redstone Arsenal, Alabama, April 1979.

e T =

* Note that a superscript T denotes transposition.
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az (t)

P =A 2 (t) +ult); 0 <t <T (11)
t

where u(t) is the vibration driving process, and the system matrix
represents the model response of the target. It can be assumed
that the driving process {u(t), 0 < t < T} is a vector white Gaussian

process with zero mean and autocorrelation matrix 1

E {u(t) u' (s)} = Q §(t-s) (12) |
N

where Q is an n x n covariance matrix, and §(t-s) denotes the Dirac
Ny

delta function. We may also assume that the initial condition vec-
tor Z(0) is Gaussian. ’

Note that our observation model is given by

Y(£) = cT 2(t) + N(t); 0 <t < T (13)

where g? = [cl, c2,...,cn]. Thus since X(t) = g?g(t), we have the
MMSE estimate,

il

X(t) = E {X(£)|¥(); 0 < 1 <t}
E (cT2(t) [¥(1); 0 < 1 < t}

¢’ E {Z(t)|¥(t); 0 < v <t} (14)

where we have used linearity of the expectation operator. We note
now that the guantity

Z(t) = E {2(£)]|Y(1); 0 < © <t} (15)
is the minimum-mean-norm-error estimate of Z(t) based on
{Y(z); 0 < v < t}, which for this model {[Equations (11) and {(13)]
i - 10

is given by the Kalman-Bucy filter. j

Referring to Equation (8), we have

I(Y:X) ﬁo E ;/Tl X(t) - X(t)]2 dts i
0

i

T .
iiﬁ E zf teT 2z (t) - cf a(e)]? dt%
o o T T

T ~ -~
B le E 31[ .C.T [2(t) - z(e)liz(t) - 2(t) ]Tg dtg
0

1¢. R. E. Kalman and R. Bucy, "New Results in Linear Filtering and
Predicticn,” iVF J. 2aeio Ingineering, Vol. 83D, 1961, pp. 95-108.

10
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T
f ¢’ p(t) ¢ at,
0

where
P(t) = E { [a(t) - 2(t)1[2(t) ~ 2()17). (17)

Note that E(t) is the error covariance matrix for the Kalman-Bucy

filter and thus satisfies the matrix Riccati equation 10

ap (t) T

— = A P(t) + P(t)Q + Q - N g(t)g c” P(t); 0 <t <T (18)
dt

with initial condition P(0) equal to the convariance matrix of Z(0).

Note that A is from Equation (11), Q is from Equation (12}, and

N0 is the spectral height of the whlte observation noise. The solu-

tion to the matrix Riccati equation of Equation (18) is discussed

in Reference 8, pp. 136-142., Thus we see that Equations (16) and (18)
allow for the computation of I(Y;X) for the vibration signature model
of Equations (11) and (13).

C. Information Gains for Other Dynamical Parameters

Note that the procedure outlined in subsection IIIB can
be applied to any parameter which has the dynamical structure
described by Equation (l1l). Signature parameters are normally pre-
sent in the form of modulations on the radar return and dynamical
models such as Equation (1l1l) for waveform modulation have been studied

extensively (see, for example, Snyderll). Note also that vector

dynamical parameters can also be treated in this manner, as follows.

Suppose that X = {X(t), 0 < t < T} is a vector random process

(say, m - dimensional) and Y is a vector observation process given by
Y(t) = X(t) + N(t); 0 <t < T (19)
where N(t) is a vector Gaussian white noise (independent of X) with

autocorrelation matrix

E (N(t) NT(8)} = Ny I 5(t=s) (20)

where T is the n x n‘identity matrix. Then it can be shown that (see
Reference 6)

11. D. L. Snyder, The State-Variatle dprroach to Continuous Ferimaticm,
MIT Press, Cambridge, Massachusetts, 1969.
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1 T s oo -
I(YiX) = 55— E ff [X(t) - X(£)]" [X(t) - X(t)] dtf
0 0 = =
where
X(t) = E {X(£)]¥Y (1); 0 < 7 < t}, (22)

If we have
X(t) = C2(t); 0 <tx<T (23)

where 2Z(t) is generated as in Equation (1ll) and where ¢ is an m x n
matrix, then it is straightforward to show that I(Y:;X) will be
given by

T
. A | T
I(Y;X) = -2—1—%-_([ tr {¢ P(t)C } dt (24)

where P(t) is defined by Equation (17) and tr {-} denotes the trace
operator. For this case P(t) will be given by Equation (18), with
the final term replaced by

NoThR(e) €T ¢ R(E) (25)

where NO is the scale of the observation correlation matrix from

Equation (20).

The observation model of Equation (7) can be also gener-
alized to include parameter extraction systems with feedback. 1In
particular, we can consider the model

t

Y(t) = ¢[¥, 77 X ; ] + N(t); 0 <t < T, (26)

t

where Y0 = {¥(1); 0 <t < t} and where ¢(.;.;.] is an arbitrary

parameter extraction system. The presence of Yot allows feedback
systems (such as phase-lock loops) to be included in the model.
Note also that ¢ can be a nonlinear functional of X and can change
with time., Here, as before, {N(t); 0 < t < T} is white Gaussian
noise. The mutual information or information gain for this extrac-

1
tion system can be shown to be 12

T%) = g B | fTle 190% xi 81 - 8 1vy%r sn?as (27)
0
0
where
N s, = { S, v.gq1!y S
¥ [YO ’ S] - E ﬁ[Yo ’ Xls]yYO ]' (28)

12. T. 7. Kadota, M. Zakai, and J. Ziv, "Mutual Information of
the White Gaussian Channel With and Withcut Feedback, " TZ=f
Tpene. Inform. Theory,Vol, IT-17, 1971, pp. 368-371.

12




Note that this result is much more general than that of Equation (8).
It should be noted, however, that the exact computation of Eguation
(27) may be difficult for nonlinear problems. However, if X is
generated by a dynamical system (linear or nonlinear), the expres-

. sion of Equation (27) can be approximated by considering the

extended Kalman filter.ll

13




THE RATE AT WHICH INFORMATION IS PRODUCED BY RADAR
OBSERVATIONS

A. Introduction

Suppose again that the signature parameter X is a random
process {X(t); 0 < t < T} and that the observation Y is a random
process {Y(t); 0 < t < T}. The quantity I(Y;X) is a measure of
how much information Y contains about X. Thus, the rate at which
this information is produced is given by [I(¥;X)/T). To get a
single number for the rate, independent of the length T of the
observation interval, we can consider the following definition
for information rate:

R(Y:X) = lim [li%ﬁﬁl—] ] (29)
Trowo

Thus R{Y;X) is a measure of the rate at which the radar observation

Y produces information about the signature parameter X and will

give us an idea of how long we must observe a target to get a given

amount of information about X. In this section we consider the com-
putation of R(Y;X) for some general observation models.

B. Information Rate for the Vibration Signature

Before considering the information rate for general models,
we first will consider the vibration signature model discussed in
subsection IB. Using Equations (16) and (29) we see that

1 T 1
R(Y;X) = lim ﬁ——T— c B(t) c dtp. (30)
Tr>» 0

Since the vibrational mode matrix 3 of Equation (11) represents a
passive mechanical system (the source enters the system through
{fu(t); 0 < t < T}), the vibrational modes {2 (t); 0 < t < T} will
achieve a statistical steady state as T+~, and the error covariance
matrix P(t) will become constant as T+=. 1In particular, we will

have

lim P(t) = P (31)
T

where P is the soluticn to the steady-state Riccati equation,
T -1 T
Q=AR+2A +Q2-Ny "Rgg K- (32)

"~

Here Q denotes the n x n matrix with all zero entries.
Using Equations (30) and (31), we then have that

R(V;X) = 54— ¢ B ¢ (33)
0

\
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where P is from Equation (32). Equation (33) can be written in a
more useful form. In particular, we note that Equation (33) repre-
sents one-half of the normalized steady-~-state Wiener filtering
error for the model of Equation (7). Expressions for this error
have been derived by several authors, and the error is given for

this case by (see, for example, Reference 11, p. 43)

N ©
gT Rc= 2—2 / log [1 + Syy (w)/Njyl du (34)

e

where Sxx(m) is the power spectral density of the parameter process
X; that is, Sxx(w) is the vibration spectrum of the target. Since

we must have Sxx(m) = Sxx(-w), Equations (33) and (34) give

R(Y;X) = 2—1{ log [1 + Syy(w) /Nyl dw. (35)

0

Thus the rate at which the configuration of Figure 2 produces
information about the target vibration signature is given in terms
of the vibration spectrum by Equation (35). Note that the measure-
ment of vibration spectra of radar targets has been studied by

Webb, Emmons, and Curtis.13

C. A General Formula for Information Rate

Equation (35) gives a useful formula for the rate at which
the system of Figure 2 produces information about the vibration
signature of a target. The general theory of the information rates

of random processes is treated in detail by Pinsker.5 More general
observation models than that of Equation (7) can be considered in
this context, and in this subsection we present a generalization

of Equation (35) for such models.

Assume that the signature and observation processes
{X(t); 0 <t < T} and {Y(t); 0 < t < T} are jointly Gaussian and
are jointly and individually stationary. Let SXY(u) denote

the cross power spectrum of X and Y, SXX(”) denote the power
spectrum of X, and SYY(w) denote the power spectrum of Y. A

spectrum is said to be rational if it can be written as the
ratio of two polynomials in w. Processes with rational spectra
arise naturally from the conventional finite-state linear models
for dynamical parameters. If the spectra SXY' SXx and SYY are

rational, then the rate R(Y;X) is given by (see Reference 5,
pp. 181-182)

13, W. E. Webb, G. A. Emmons, and R. A. Custis, Yeasurement of
7ibration Sianatures by Means of a (0, Laser Radar, Technical Report
RE-77-2, Advanced Sensors Directorate, U.S. Army Missile
Command, Redstone Arsenal, Alabama, October 1976.
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I(Y;X) = 5= _Of log [1 =[ryy(w) |21 dw (36) ]
1

3 {
g where | lz 1
! Sy,v (W) |
, XY

' lrgy (w) |2 = . (37)

j XY Syx (@) Sgy(w) ‘
! 1
§ * The expression of Equation (36) also holds when the condition of

rational spectra is relaxed to a more general condition (see
Reference 5, pp. 182).

Equations {36) and (37) give a formula for the rate at
which Y produces information about X in terms of the spectral pro-
perties of X and Y. To illustrate this result, let us consider
the observation model of Equation (7); that is,

Y(t) = X(t) + N(t); 0 <t < T (38)

where {X(t); 0 < t < T} and {N(t); 0 < t < T} are orthogonal. In
this case, we have

- 2 (w)
'SXY(“’HZ = Syx ° (39)

and

S = Sxx(w) + SNN(w), (40)

YY(w)

where SNN(w) is the spectrum of the noise process {N(t) ; 0 < t < T}.
Equation (36) becomes

1 [7 Sgx (@)
I(Y;X) = VT { log |1 + W duw, (41)

which generalizes Equation (35).
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V. SUMMARY AND DISCUSSION

e S it A e S s -

In this report we have considered the generalization of the
Woodward-Davies information analysis to the case of general target
- signature parameters exhibiting dynamical behavior. We see from
the results of Section III that the information gained by radar
observation of a dynamical parameter can be computed from the
p underlying dynamical structure of the parameter. Similarly, it
was demonstrated in Section IV that the rate at which radar
observations produce information about a dynamical parameter is
determined by the spectral properties of the parameter and of
the noise introduced by the channel.

ol SR s s A MY

A number of potentially useful extensions of the ideas are
presented in this report. For example, we can also consider
measures of the value of a given parameter as a discriminant
between targets. Information theoretical measures of discrimina-
tion ability (e.g., the I-divergence) can be computed using tech-
niques similar to those used for computing mutual information.
Previous work relevant to this aspect of information analysis is

found in two papers by Schweppe.“’15 Again, the dynamical and
spectral properties of the parameters can be exploited.

Other useful topics of interest include the design and
implementation of experiments for the determination of parameter
dynamics and spectral properties and the study of the signal
grocessing required to achieve performance near the fundamental

imits.

3 . ) 14, F. C. schweppe, "On the Bhattacharyya Distance and the Divergence
Between Gaussian Processes," Inform. Control, Vol. 11, 1967,
pp. 373-395.

15. F. C. Schweppe, "State Space Evaluation of the Bhattacharyva

: Distance Between Two Gaussian Processes," Inform. Contrcl,
vol. 11, 1967, pp. 352-372.
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